
IJCEM International Journal of Computational Engineering & Management, Vol. 11, January 2011

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

22

A Study of Software Metrics

Gurdev Singh1, Dilbag Singh2, Vikram Singh3

1 Assistant Professor, JIET Jind. gurujangra@gmail.com

2 Professor, Dept. of CSE, Ch. Devi Lal University Sirsa

3 Professor, Dept. of CSE, Ch. Devi Lal University Sirsa

Abstract

Poor size estimation is one of the main reasons major

software-intensive acquisition programs ultimately fail.

Size is the critical factor in determining cost, schedule, and

effort. The failure to accurately predict (usually too small)

results in budget overruns and late deliveries which

undermine confidence and erode support for your program.

Size estimation is a complicated activity, the results of

which must be constantly updated with actual counts

throughout the life cycle. Size measures include source

lines-of-code, function points, and feature points.

Complexity is a function of size, which greatly impacts

design errors and latent defects, ultimately resulting in

quality problems, cost overruns, and schedule slips.

Complexity must be continuously measured, tracked, and

controlled. Another factor leading to size estimate

inaccuracies is requirements creep which also must be

baseline and diligently controlled.

Software metrics measure different aspects of software

complexity and therefore play an important role in

analyzing and improving software quality. Pervious

research has indicated that they provide useful information

on external quality aspects of software such as its

maintainability, reusability and reliability. Software

metrics provide a mean of estimating the efforts needed for

testing. Software metrics are often categorized into

products and process metrics.

Keywords: LOC-Line of Code, WMC-Weight Method per

Class, RFC-Response for class, LCOM- Lack of Cohesion,

CBO- Coupling Between object classes, DIT- Depth of

Inheritance Tree.

1. RELATIONSHIP BETWEEN SOFTWARE

COMPLEXITY METRICS AND VARIOUS

ATTRIBUTES OF SOFTWARE SYSTEM:

2. TYPE OF SOFTWARE METRICS:

2.1 Process Metrics: Process metrics are known as

management metrics and used to measure the properties of

the process which is used to obtain the software. Process

metrics include the cost metrics, efforts metrics,

advancement metrics and reuse metrics. Process metrics

help in predicting the size of final system & determining

whether a project on running according to the schedule.

2.2 Products Metrics: Product metrics are also known as

quality metrics and is used to measure the properties of the

software. Product metrics includes product non reliability

metrics, functionality metrics, performance metrics,

usability metrics, cost metrics, size metrics, complexity

metrics and style metrics. Products metrics help in

improving the quality of different system component &

comparisons between existing systems.

3. ADVANTAGE OF SOFTWARE METRICS:

• In Comparative study of various design

methodology of software systems.

• For analysis, comparison and critical study of

various programming language with respect to

their characteristics.

IJCEM International Journal of Computational Engineering & Management, Vol. 11, January 2011

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

23

• In comparing and evaluating capabilities and

productivity of people involved in software

development.

• In the preparation of software quality

specifications.

• In the verification of compliance of software

systems requirements and specifications.

• In making inference about the effort to be put in

the design and development of the software

systems.

• In getting an idea about the complexity of the

code.

• In taking decisions regarding further division of

complex module is to be done or not.

• In providing guidance to resource manager for

their proper utilization.

• In comparison and making design tradeoffs

between software development and maintenance

cost.

• In providing feedback to software managers about

the progress and quality during various phases of

software development life cycle.

• In allocation of testing resources for testing the

code.

4. LIMITATION OF SOFTWARE METRICS:

• The application of software metrics is not always

easy and in some cases it is difficult and costly.

• The verification and justification of software

metrics is based on historical/empirical data

whose validity is difficult to verify.

• These are useful for managing the software

products but not for evaluating performance of

the technical staff.

• The definition and derivation of Software metrics

is generally based on assuming which are not

standardized and may depend upon tools

available and working environment.

• Most of the predictive models rely on estimates of

certain variables which are often not known

exactly.

• Most of the software development models are

probabilistic and empirical.

5. CLASSIFICATION OF SOFTWARE METRICS:

6. SIZE METRICS:

6.1 Line of Code: It is one of the earliest and simpler

metrics for calculating the size of computer program. It is

generally used in calculating and comparing the

productivity of programmers.

• Productivity is measured as LOC/man-month.

• Any line of program text excluding comment or

blank line, regardless of the number of statements

or parts of statements on the line, is considered a

Line of Code.

6.2 Token Count:

In this metrics, a computer program is considered to be a

collection of tokens, which may be classified as either

operators or operands. All software science metrics can be

defined in terms of these basic symbols. These symbols are

called as token. The basic measures are

n1 = count of unique operators.

IJCEM International Journal of Computational Engineering & Management, Vol. 11, January 2011

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

24

n2 = count of unique operands.

N1 = count of total occurrences of operators.

N2 = count of total occurrence of operands.

In terms of the total tokens used, the size of the program

can be expressed as N = N1 + N2

6.3 Function Count:

• The size of a large software product can be

estimated in better way through a larger unit

called module. A module can be defined as

segment of code which may be compiled

independently.

• For example, let a software product require n

modules. It is generally agreed that the size of

module should be about 50-60 line of code.

Therefore size estimate of this Software product

is about n x 60 line of code.

7. SOFTWARE SCIENCE METRICS:

Halstead’s model also known as theory of software

science, is based on the hypothesis that program

construction involves a process of mental manipulation of

the unique operators (n1) and unique operands (n2). It

means that a program of N1 operators and N2 operands is

constructed by selecting from n1 unique operators and n2

unique operands. By using this Model, Halstead derived a

number of equations related to programming such as

program level, the implementation effort, language level

and so on. An important and interesting characteristics if

this model is that a program can be analyzed for various

feature like size, efforts etc.

Program vocabulary is defined as n = n1 + n2

And program actual length as N = N1 + N2

One of the hypothesis of this theory is that the length of a

well-structured program is a function of n1 and n2 only.

This relationship is known as length prediction equation

and is defined as

Nh = n1 log2 n1 + n2 log2 n2

The following length estimators have been suggested by

some other researchers:

Jensen’s Program Length Estimator [N1]

It is described as

N1 = Log2 (N1!) + Log2 (n2!)

It was applied and validated by Jensen and Vairavan for

real time application programs written in Pascal and found

even more accurate results than Halstead’s estimator.

Zipf’s Program Length Estimator [Nz]

Nz = n [0.5772 + ln (n)]

where n is program vocabulary given as n = n1 + n2

Bimlesh’s Program Length Estimator [Nb]

Nb = n1 Log2 (n2) + n2 Log2 (n1)

where n1 : Number of unique operators which include

basic operators, keywords/reserve- words and

functions/procedures.

n2 : Number of unique operands.

Program Volume (V)

The programming vocabulary n = n1 + n2 leads to another

size measures which may be defined as :

V = N log 2 n

Potential Volume (V*)

It may be defined as V* = (n1* + n2 *) log2 (n1* + n2 *)

Where n1* is the minimum number of operators and n2* is

the minimum number of operands.

8. CONTROL FLOW METRICS:

8.1 McCabe’s Cyclomatic Metric: McCabe interprets a

computer program as a set of strongly connected directed

graph. Nodes represent parts of the source code having no

branches and arcs represent possible control flow transfers

during program execution.

The notion of program graph has been used for this

measure and it is used to measure and control the number

of paths through a program. The complexity of a computer

program Can be correlated with the topological complexity

of a graph.

McCabe proposed the cyclomatic number, V(G) of graph

theory as an indicator of software complexity. The

cyclomatic number is equal to the number of linearly

independent paths through a program in its graphs

representation. For a program control graph G, cyclomatic

number , V(G), is given as:

V(G) = E – N + P

E = The number of edges in graphs G

N = The number of nodes in graphs G

P = The number of connected components in graph G.

8.2 Stetter’s Program Complexity Measure: Stetter’s

metric accounts for the data flow along with thecontrol

flow of the program which can be calculated from the

source code. So it may be view as a sequence of

declaration and statements. It is given as

P = (d1, d2, -------- , dk s1 , s2, ---------------, sm)

Where d’s are declarations

 s’s are statements

 P is a program

Here, the notion of program graph has been extend to the

notion of flow graph. A flow graph of a program P can be

IJCEM International Journal of Computational Engineering & Management, Vol. 11, January 2011

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

25

defined as a set of nodes and a set of edges. A node

represents a declaration or a statement while an edge

represents one of the following:

1 Flow of control from one statement node say si to

another sj.

2 Control flow from a statement node dj to a statement

node si which is declared in dj.

3 Flow from a declaration node dj to statement node si

through a read access of a variable or a constant in si

which is declared in dj.

This measure is defined as F(P) = E – ns + nt

Where ns = number of entry nodes

 nt = number of exit nodes

9. INFORMATION FLOW METRICS:

• Information Flow metrics deal with this type of

complexity by observing the flow of information

among system components or modules.This

metrics is given by Henry and Kafura. So it is also

known as Henry and Kafura’s Metric.

• This metrics is based on the measurement of the

information flow among system modules. It is

sensitive to the complexity due to interconnection

among system component. This measure includes

complexity of a software module is defined to be

the sum of complexities of the procedures

included in the module. A procedure contributes

complexity due to the following two factors.

1. The complexity of the procedure code itself.

2. The complexity due to procedure’s connections to its

environment. The effect of the first factor has been

included through LOC (Lin Of Code) measure. For the

quantification of second factor, Henry and Kafura have

defined wo terms, namely FAN-IN and FAN-OUT.

FAN-IN of a procedure is the number of local flows into

that procedure plus the number of data structures from

which this procedure retrieve information.

FAN –OUT is the number of local flows from that

procedure plus the number of data structures which that

procedure updates.

Procedure Complexity = Length * (FAN-IN * FAN-

OUT)**2

Where the length is taken as LOC and the term FAN-IN

*FAN-OUT represent the total number of input –output

combinations for the procedure.

10. NEW PROGRAM WEIGHTED COMPLEXIT

MEASURE:

A program is a set of statements which in turn include

operators and operands. Thus the program statements,

operators and operands are basic units of a program. The

prominent factors which contribute to complexity of a

program are:

10.1 Size: Line program incur problem just by virtue of

volume of the Information that must be absorbed to

understand the program and more resources have to be

used in their maintenance. Therefore size is a factor which

adds complexity to a program.

10.2 Position of a Statement: We assume that the

statements which are at the beginning of the program logic

are simple and hence easily understandable and thus

contribute less complexity than those which are at deeper

level of the logic of a program. So we design a weight 1 to

first executable statement and 2 to second and so on. It

may be treated as positional weight (Wp).

10.3 Type of control structure: A program with more

control structures is considered to be more complex and

vice versa. But, we assume that different control structures

contribute to the complexity of a program differently. For

example, iterative control structures like while..do, repeat

… until, for .. to .. do contribute more complexity than

decision making control structure like if.. then.. Else. So

we assign different weights to different control structures

10.4 Nesting: A statement which is at deeper level is

harder to understand and thus contribute more complexity

than otherwise. We take effect of nesting by assigning

weight 1 to statements at level one, Weight 2 for those

statements which are at level 2 and so on.

The weight for sequential statements is taken as zero.By

taking these assumptions into account, a weighted

Complexity measure of a program P is suggested as:

 j

Cw (P) = S (Wt)i * (m)I

 I=1

11. OBJECT ORIENTED METRICS:

 Weight Method per Class (WMC)

 Response for Class (RFC)

 Lack of Cohesion of Methods (LCOM)

 Coupling between Object Classes (CBO)

 Depth of Inheritance Tree (DIT)

 Number of Children (NOC)

IJCEM International Journal of Computational Engineering & Management, Vol. 11, January 2011

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

26

11.1 Weight Method per Class (WMC):

This metric is used to measure the understandability,

reusability and maintainability.

• A class is a template from which objects can be

created. Classes with large number of methods are

likely to more application specific, limiting the

possibility of reuse.

• This set of objects shares a common structure and

a common behavior manifested by the set of

methods.

• The WMC is a count of the methods implemented

within a class or the sum of the complexities of

the methods. But the second measurement is more

difficult to implement because not all methods are

accessible within the class hierarchy because of

inheritance.

• The larger the number of methods in a class is the

greater the impact may be on children, since

children inherit all of the methods defined in a

class.

11.2 Response for Class (RFC):

A message is a request that an object makes to another

object to perform an operation. The operation

executed as a result of receiving a message is called a

method.

• The RFC is the total number of all methods within

a set that can be invoked in response to message

sent to an object. This includes all methods

accessible within the class hierarchy.

• This metrics is used to check the class

complexity. If the number of method is larger that

can be invoked from class through message than

the complexity of the class is increase.

11.3 Lack of Cohesion of Methods

(LCOM):

Cohesion is the degree to which methods within a

class are related to one another and work together to

provide well bounded behavior.

• LCOM uses variable or attributes to measure the

degree of similarity between methods.

• We can measure the cohesion for each data field

in a class; calculate the percentage of methods

that use the data field.

• Average the percentage, then subtract from 100

percent. Lower percentage indicates greater data

and method cohesion within the class.

• High cohesion indicates good class subdivision

while a lack of cohesion increases the complexity.

11.4 Coupling between Object Classes (CBO):

• Coupling is a measure of strength of association

established by a connection from one entity to

another.

• Classes are couple in three ways. One is, when a

message is passed between objects, the object are

said to be coupled. Second one is, the classes are

coupled when methods declared in one class use

methods or attributes of the other classes. Third

on is, inheritance introduced significant tight

coupling between super class and subclass.

• CBO is a count of the number of other classes to

which a class is coupled. It is measured by

counting the number of distinct non inheritance

related class hierarchy on which a class depends.

• Excessive coupling is detrimental to modular

design and prevent reuse. If the number of couple

is larger in software than the sensitivity to

changes in other in other parts of design.

 11.5 Depth of Inheritance Tree (DIT):

• Inheritance is a type of relationship among classes

that enables programmers to reuse previously

defined object objects, including variables &

operators.

• Inheritance decrease the complexity by reducing

the number of operations and operators, but this

abstraction of objects can make maintenance and

design more difficult.

• Depth of class within the inheritance hierarchy is

the maximum length from the class node to the

root of the tree, measured by the number of

ancestor classes.

• The deeper a class within the hierarchy, the

greater the number of methods and is likely to

inherit, making it more complex to predict its

behavior.

• A support metric for DIT is the number of

methods inherited.

 11.6 Number of Children (NOC):

• The number of children is the number of

immediate subclasses subordinates to class in the

hierarchy.

• The greater the number of children, the greater

the parent abstraction.

• The greater the number of children, greater the

reusability, since the inheritance is a form of

reuse.

• If the number of children in class is larger than it

require more testing time for testing the methods

of that class.

IJCEM International Journal of Computational Engineering & Management, Vol. 11, January 2011

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

27

12 CONCLUSIONS:

A metrics program that is based on the goals of an

organization will help communicate, measure progress

towards, and eventually attain those goals. People will

work to accomplish what they believe to be important.

Well-designed metrics with documented objectives can

help an organization obtain the information it needs to

continue to improve its software products, processes, and

services while maintaining a focus on what is important. A

practical, systematic, start-to-finish method of selecting,

designing, and implementing software metrics is a valuable

aid. In this paper we study different type of software

metrics which are used during the software development.

References:

[1] Chidamber, Shyam and Kemerer, Chris, “A metrics

Suite for Object Oriented Design”, IEEE Transactions on

Software Engineering, June, 1994, pp. 476-492.

[2] Lorenz, Mark and Kidd, Jeff, Object Oriented Software

metrics, Prentice Hall Publishing, 1994.

[3] Victor R. Basili, Lionel Briand and Walcelio L. Melo

“A validation of object-oriented design metrics as quality

indicators” Technical report, Uni. of Maryland, Deptt. of

computer science, MD, USA.April 1995.

[4] “The Role of Object Oriented metrics” from

archive.eiffel.com/ doc/ manuals/ technology.

[5] Rajender Singh, Grover P.S., “A new program

weighted complexity metrics” proc. International

conference on Software Engg. (CONSEG’97), January

Chennai (Madras) India, pp 33-39

[6] I. Brooks “Object oriented metrics collection and

evaluation with software process” presented at

OOPSLA’93 Workshop on Processes and Metrics for

Object Oriented Software development, Washington, DC.

[7] “Software quality metrics for Object Oriented System

Environments” by Software Assurance Technology Center,

National Aeronautics and Space Administration.

